科研进展
  • 贺泓院士团队在甲醇重整制氢研究方面取得重要进展
    中国科学院生态环境研究中心贺泓院士团队在甲醇重整制氢方面取得重要研究进展,该研究成果以“Optimizingselectivityviasteeringdominantreactionmechanismsinsteamreformingofmethanolforhydrogenproduction”为题,在线发表于NatureCommunications期刊上。在“碳达峰、碳中和”战略背景下,绿色氢能在推动能源结构演替方面发挥着至关重要的作用。甲醇水蒸气重整(MSR)制氢作为绿色氢能的重要来源之一,因其高效、可持续和低环境影响,成为研究者关注的重点。提高MSR反应的选择性和氢气产率是该领域亟待解决的关键科学问题,这直接影响到绿色氢能的经济性和应用价值。钯催化剂(Pd/ZnO)是MSR反应的一种典型催化剂,其目标反应途径为:PdZn合金上反应关键中间体CH2O*被水解离产生的OH*物种氧化为CO2和H2,但同时存在CH2O*直接分解为CO和H2的副反应竞争,导致目标产物的选择性较低。为解决这一问题,本研究提出了一种通过路径优化来精细调控选择性的策略。将Cu引入Pd/ZnO催化剂中,形成稳定的PdCu合金,有效调整催化反应动力学,降低水解离能垒,从而提供了更多活性羟基以促进CH2O*的氧化反应,提高了反应活性和目标产物选择性。同时,PdCu合金上CO解吸的能垒提高,有效抑制了CH2O*的分解,阻碍了副反应产物CO的生成。这一双重功能的调控显著提升了甲醇水蒸气重整制氢的活性和选择性。实验结果表明,优化后的PdCu1/ZnO催化剂的活性比传统Pd/ZnO催化剂提高2.3倍,并且CO选择性显著降低了75%。本研究通过识别并优化关键反应步骤,精细调控催化反应的选择性,为高效催化剂的设计合成及绿氢生产提供了重要指导。图1.PdCux/ZnO催化剂的(a)晶体结构,(b,c)微观形貌,MSR反应的(d)氢气产率,(e)CO选择性和甲醇转化率。中国科学院生态环境研究中心博士研究生张梦媛和助理研究员刘智为论文共同第一作者,生态环境研究中心徐光艳研究员、余运波研究员和美国宾夕法尼亚大学JosephS.Francisco教授为共同通讯作者。该研究工作得到了国家重点研发计划青年科学家项目、国家自然科学基金以及碳达峰碳中和生态环境技术专项的支持。论文链接:https://doi.org/10.1038/s41467-025-57274-y大气环境与污染控制实验室2025年2月28日
    2025-02-28
  • 焦文涛研究组在热耦合电动力强化低渗透土壤中物质传输方面取得新进展
    土壤中低渗透孔道中物质传输受限,成为土壤污染修复的关键瓶颈。电动传输可提高低渗透土壤污染物和降解菌的可达性,热效应提高污染物降解菌的迁移活性,两者结合预期可实现土壤物质的精准靶向传输,但其传输和耦合热场作用的机制尚不明晰。阐明低渗透土壤中热耦合电动力传输的机制,对土壤有机污染的低碳高效微生物修复具有重要意义。针对热耦合电动力在纳米孔道内的污染物传输机制不清的问题,中国科学院生态环境研究中心焦文涛研究组与德国亥姆霍兹环境研究中心LukasY.Wick教授合作,以SEM-EDS和BET孔道占用从微观角度揭示了热耦合电动力驱动新污染物PFOA在难到达的2-10nm吸附位点的颗粒内扩散的机理;热效应通过粘滞性强化电渗微流是其主要的耦合作用机制。针对热耦合电动力在微米孔道内的降解菌传输机制不明的问题,以流式细胞仪和石英晶体微天平量化表征了热耦合电动力降低细菌吸附刚性,从而强化了降解菌的迁移达3.5倍;热效应通过调控固液介质理化性质强化电泳克服DLVO吸附力,是热-电动力耦合的主要机理;相关性矩阵热图分析表明,粘滞系数、介电常数、zeta点位是热强化电动力的主控因子。热耦合电动力传输污染物(A)和降解菌(B)的物理机制相关研究成果发表在EnvironmentalScience&Technology(Shanetal.,2024,2025)和JournalofEnvironmentalSciences(Shanetal.,2023)。单永平助理研究员为论文第一作者,焦文涛研究员为通讯作者。该研究得到了国家自然科学基金(42277011&42077126)、博士后面上、特别资助(2022M713300、2023T160667)等项目的资助。论文链接:https://pubs.acs.org/doi/10.1021/acs.est.3c10590https://pubs.acs.org/doi/10.1021/acs.est.4c07954https://linkinghub.elsevier.com/retrieve/pii/S1001074223004722环境纳米技术与健康效应实验室2025年1月24日
    2025-01-24
  • 蔡亚岐研究组在亚乙烯基连接共价有机框架的后修饰合成及热催化CO2转化方面取得进展
    2016年,通过利用芳基乙腈单体与芳香族醛之间的碱催化Knoevenagel缩合,提出了氰基乙烯基连接的共价有机框架材料(covalentorganicframeworks,COFs),从此开启了sp2-c-COF的新篇章。sp2-c-COF因其全π共轭结构、高结晶度、超高稳定性和优异的光电性能而备受关注。但受限于C=C键可逆性差导致的反应类型和单体类型不足,sp2-c-COF结构和功能的多样性较差。后修饰策略通过将功能基团纳入预定的框架,有效避免了这些问题,为构建特定功能的sp2-c-COF提供了一种可行的解决方案。(1)我们提出了一种通过巯基-烯点击反应,将C-C、C-S-C结构单元引入sp2-c-COF的普适性策略。首先合成了两种sp2-c-COF(COF-CN,COF-1),随后在它们的骨架C=C位点引入六种不同类型的巯基化合物。X-射线光电子能谱(XPS)和交叉极化魔角旋转13C固态核磁谱等表征表明,这一策略能够灵活地通过巯基-烯点击反应在任何亚乙烯基连接的COFs骨架C=C位点进行结构修饰,极大丰富了sp2-c-COF的结构和功能多样性。该方法制备的巯基-烯点击反应产物(COF-CN-R,COF-1-R)表现出多样的光物理性质、亲疏水性,以及质子传导性,展现出广泛的潜在应用前景。该工作发表在ACSAppliedMaterials&Interfaces(DOI:10.1021/acsami.4c19765)。图一:光引发和热诱导巯基-烯点击反应合成COF-CN-R和COF-1-R的图示(2)二氧化碳(CO2)是温室气体的主要成分,但其也是一种可持续的碳源。因此,将CO2捕获和转化为高附加值化学品对改善生态环境和发展绿色有机化学品具有重要意义。在CO2的固定方法中,其与环氧化物的偶联反应因其100%的原子效率而备受关注。我们制备了结构单元中同时具有酸性氢键供体(-COOH,-NH2)和碱性(三嗪环)位点的新型COF催化剂,该催化剂由种类广泛的氰基单体和PIM-1对碳碳双键COF-CN进行氰基三聚环化反应合成。凭借可定制的氢键位点、高CO2亲和力和稳定性,这些COF催化剂表现出优异的CO2环加成催化性能,其中COF-CN-COOH的催化产率高达99.9%,选择性>99%。另外,由COF-CN与PIM-1共价连接而成的20%COF-CN@sPIM-1膜催化剂具有良好的界面稳定性,很容易回收和再利用,并保持良好的催化活性。进一步研究证明氢键供体的存在显著降低活化能是高效催化的关键。这项工作提出的COF主链上的氰基的三聚环化反应后修饰策略,丰富了亚乙烯基连接COF的结构性能多样性,具有一定的应用前景。该工作发表在AdvancedFunctionalMaterials(DOI:10.1002/adfm.202422116)。图二:氰基三聚环化反应制备COF-CN-COOH,COF-CN-NH2和20%COF-CN@sPIM-1催化剂的图示该研究得到了国家自然科学基金项目和国家重点研发计划项目的资助。论文链接1:https://pubs.acs.org/doi/10.1021/acsami.4c19765论文链接2:https://doi.org/10.1002/adfm.202422116环境化学与生态毒理学国家重点实验室2025年1月24日
    2025-01-24
  • EcoImprove: 污水处理厂排放新污染物的水生态效应
    曲久辉院士团队微生态过程与调控研究组近日在Mol.Syst.Biol.发表了关于污水厂排放的磺胺类抗生素对微生物的毒性兴奋效应进化机制。研究发现环境浓度磺胺类抗生素能导致微生物核心代谢基因的表观遗传甲基化修饰与基因突变,使得微生物的代谢策略发生转变,从而增加微生物耐药性(文章第一作者是中心博士研究生林慧)。这项研究是EcoImprove项目的收官之作。EcoImprove项目是水质学国家重点实验室与瑞士Eawag合作完成的,由国家自然基金委重点国际(地区)合作研究项目支持(见图1)。项目的特色是环境科学、生物学、统计学等的相互融合。2014年,瑞士Eawag率先启动了EcoImpact项目,项目的主要任务是(1)解析污水厂污染物排放对受纳河流生物群落的影响;(2)模拟试验探究污水厂排放微量污染物(与现在所称的新污染物基本一致)对生物结构与功能的影响。2015年,我们启动了EcoImprove项目,由水质学国家重点实验室6个研究组共同参与,其主要任务是(1)现场调研探讨污水厂升级改造对受纳河流生物群落的影响;(2)模拟试验探究污水厂排放微量污染物的水生态效应。双方在污水厂微量污染物造成敏感微生物的减少、营养物质能掩蔽微量污染物的效应、污水厂升级能使恢复生物的功能等研究结果取得一致。本项目的实施也为后来争取到的国家自然基金委重大项目(2024年开始)及中科院前沿科学重点研究项目(2016-2020)打下基础。另外,值得一提的是这项研究也已获得国家自然基金委科普项目的支持。前年,项目组启动了EcoImprove2,主要关注污水厂排放的病原微生物和病毒对流域人群健康的影响,重点已从流域内生态风险过渡到生态和人群健康风险并举。图1EcoImprove项目研究历程注:左边是不同的研究对象;右边是研究的科学问题近日发表文章链接:https://doi.org/10.1038/s44320-025-00087-4EcoImprove项目介绍链接:https://doi.org/10.1016/j.fmre.2022.09.034环境水质学国家重点实验室2025年1月17日
    2025-01-17
  • 傅伯杰院士团队在全球旱区凋落物分解研究中取得新进展
    中国科学院生态环境研究中心城市与区域生态国家重点实验室傅伯杰院士团队在全球旱区凋落物分解研究中取得新进展。相关研究成果以题为“PatternsandDrivingFactorsofLitterDecompositionRatesinGlobalDrylandEcosystems”发表在国际重要刊物《GlobalChangeBiology》。凋落物分解在生态系统中发挥着连接地上和地下碳循环、养分循环以及能量流动的关键作用。然而,全球变化对这一过程产生了深远影响,尤其在对自然和人为干扰敏感的干旱区。科学界对于干旱生态系统中凋落物分解的程度及其驱动因素仍知之甚少,限制了我们对干旱区生态系统碳循环的全面理解,制约了针对这些敏感区域的生态管理措施的优化。研究构建了一个全球干旱区凋落物分解数据库,记录了来自全球158个地点的2204条观测数据,包括月尺度凋落物分解速率以及气候、土壤和凋落物属性参数,涵盖不同的生态系统类型和干旱亚区。研究结果显示,随着干旱程度增加,凋落物分解速率呈现下降趋势。凋落物分解速率在四个亚区之间存在显著差异,其中干旱半湿润区(3.24%/月)>半干旱区(3.15%/月)>干旱区(2.62%/月)>极干旱区(2.35%/月)。城市和农田系统的分解速率显著高于自然生态系统,主要因为灌溉和施肥等管理措施改变了土壤条件,从而加速了凋落物分解过程。凋落物分解的时间动态可以由负指数衰减模型描述,在不同分解阶段受不同因素调控。早期阶段(0-6个月)以降水和大气温度为主,中期阶段(6-12个月)凋落物氮含量的重要性增强,晚期阶段(>12个月)土壤有机碳、氮以及凋落物初始碳氮比起主导作用。研究结果为碳循环模型优化和生态管理提供了科学依据,强调了适应性管理对增强干旱区碳汇功能的重要性。图1不同变量对全球干旱区凋落物分解速率在不同阶段的相对影响。(a)所有数据(b)分解早期(c)分解中期(d)分解晚期图2全球旱区凋落物分解速率在早、中和晚期的主要调控因素概念模型中国科学院生态环境研究中心博士研究生赵月丹为论文第一作者,吕楠研究员为通讯作者。该研究得到了国家自然科学基金和中国科学院-马普学会国际合作项目的支持。文章链接:https://doi.org/10.1111/gcb.70025城市与区域生态国家重点实验室2025年1月9日
    2025-01-09
  • 王亚韡研究员团队关于环境污染物的暴露与健康影响研究取得新进展
    近期,中国科学院生态环境研究中心王亚韡研究员团队与国家纳米科学中心陈春英院士团队合作,在全氟和多氟烷基化合物(Per-andpolyfluoroalkylsubstances,PFAS)暴露对肺癌转移的影响及分子机制研究中取得新进展,相关研究成果以Increasedperfluorooctanoicacidaccumulationfacilitatesthemigrationandinvasionoflungcancercellsviaremodelingcellmechanics为题,发表于《美国国家科学院院刊》(ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,PNatlAcadSciUSA)。PFAS是广泛存在的新型持久性有机污染物,其相关暴露风险和不良健康影响已经引起世界各国的高度关注。PFAS可以在多种环境和生物基质中检测到,并且可以通过不同的外部暴露途径进入人体,并通过血液循环分布和积累在组织、器官和生物体液中。流行病学数据显示,PFAS的浓度与人类多种疾病显著有关,如肾癌、肝癌、卵巢癌等。肺是PFAS富集的靶器官之一,同时肺癌是世界上发病率和死亡率的癌症,但尚无PFAS对肺癌影响机理的研究。本研究通过采集健康志愿者和肺腺癌患者的血液和组织样本,使用岛津公司的高效液相色谱串联质谱(LCMS-8060),靶标测定不同人群中PFAS的浓度水平和分布特征。结果表明,PFOA是人体内富集含量最高的PFAS单体之一,肺腺癌患者体内PFOA污染物含量相较健康志愿者显著上升;肺癌细胞转移、高分期患者的体内PFOA富集量显著高于低分期的肺癌患者。结合肺癌动物模型,发现在环境相关剂量下PFOA暴露能够显著促进肺内转移和胸腔转移,并且呈现剂量依赖性,提示PFOA暴露能够促进肺癌转移。在基于细胞模型的验证实验中,发现经PFOA暴露后,肺腺癌细胞系中的整合素表达下调,这与肺腺癌患者的肿瘤中观察到的表达趋势相似。进一步的临床病例验证结果表明,肺腺癌患者的肿瘤中PFOA的含量水平与整合素蛋白表达具有显著负相关,证实了PFOA与整合素的相互作用对肿瘤的发展起着重要的作用。本研究提出了PFOA促肺癌发展的潜在机制:PFOA主要通过调控肺癌细胞骨架重排,改变肿瘤细胞的力学性质,促进肺癌细胞的迁移、肿瘤干性和免疫逃逸能力上升,从而促进肺癌转移和进展。图1.健康志愿者和肺腺癌患者体内PFAS的赋存水平和特征图2.肺腺癌患者体内整合素蛋白的表达与PFOA含量的相关性该工作基于临床现象-动物模型验证-细胞模型研究-分子学机制探究的污染物毒理性质全链条研究范式,首次报道了PFAS可以诱导肺癌发展及转移的毒性效应,进一步加深对PFAS毒理性质的认知,为制定合理的管控政策提供实验基础和理论支持。国家纳米科学中心博士研究生梅婕、解放军总医院第一医学中心胸外科副主任医师江继鹏、中国科学院生态环境研究中心博士研究生李曌、国家纳米科学中心硕士研究生潘越和许克为本文的共同第一作者。中国科学院生态环境研究中心黎娟副研究员、国家纳米科学中心刘颖研究员和陈春英研究员为共同通讯作者。该研究工作得到了国家自然科学基金、国家重点研发计划、中国科学院战略性先导科技专项(B类)、中国医学科学院创新工程和新基石研究员项目等的支持。原文链接:https://www.pnas.org/doi/10.1073/pnas.2408575121图3.全氟辛酸PFOA通过PI3K信号通路调控肿瘤细胞骨架和力学性质,促进肿瘤转移环境化学与生态毒理学国家重点实验室2024年12月20日
    2024-12-20
  • 环境水质学室刘刚研究员、董慧峪研究员两篇论文分获ES&T 2023年度最佳论文奖
    近日,美国化学学会(ACS)旗下EnvironmentalScienceandTechnology(简称ES&T)公布了ES&T2023年度30篇“最佳论文”名单。ES&T期刊2023年度最佳论文是该期刊经ES&T编委评选委员会从2023年出版的约1600篇论文中严格遴选后评出。获奖论文分环境科学、环境技术、环境政策、综述、观点等类别。环境水质学国家重点实验室刘刚研究员研究论文“AssessingtheMassConcentrationofMicroplasticsandNanoplasticsinWastewaterTreatmentPlantsbyPyrolysisGasChromatography–MassSpectrometry”(高被引)、董慧峪研究员论文“UnravellingHigh-Molecular-WeightDBPToxicityDriversinChlorinatedandChloraminatedDrinkingWater:Effect-DirectedAnalysisofMolecularWeightFractions”分别荣获ES&T2023年度环境科学领域最佳论文奖。污水处理厂中,微塑料(MPs)水平通常通过颗粒数量进行评估,但是微塑料(尤其纳米塑料,NPs)的质量浓度仍不清楚。刘刚研究员团队建立了基于热裂解气相色谱-质谱法测定水环境微纳塑料质量浓度的方法,对比了两个污水处理厂中不同粒径(0.01–1、1–50和50–1000μm)微塑料和纳米塑料的质量浓度变化。研究发现,MPs的质量浓度从进水中的26.23降至1.75μg/L,NPs的质量浓度从11.28μg/L降至0.71μg/L,去除率分别达到93.3%和93.7%,其中纳米塑料(0.01–1μm)占比5.6–19.5%,其去除率低于微塑料(>1μm);基于全年污水排放量估算,每年约有0.321吨微塑料、0.052吨纳米塑料排放至河流中。该研究分析了污水中粒径范围0.01–1000μm的微塑料和纳米塑料的质量浓度,为了解污水处理厂中微纳塑料的污染与排放水平、及其分布特征提供了宝贵的信息。图1污水处理厂全流程微纳塑料质量浓度监测当前饮用水中消毒后生成的消毒副产物(DBPs)仍有近50%处于未知状态,且常规质谱识别未知DBPs方法难以明确识别出DBPs的毒性贡献。基于此,董慧峪研究员与美国南卡罗来那大学SusanD.Richardson教授、美国伊利诺伊大学香槟分校MichaelJ.Plewa教授、美国国家强磁场实验室ChadR.Weisbrod博士、AmyM.McKenna博士等采用“高致毒组分识别+物化特征解析”的研究思路(图2),解析了氯、氯胺消毒后饮用水中大分子DBPs(>C2)的不同分子量组分的细胞毒性与物化特征:发现在分子量5kD的组分中,<1kD组分具有最高的细胞毒性和遗传毒性;采用全球分辨率最高的21TFT-ICR质谱(美国国家强磁场实验室)解析了<1kD组分未知大分子DBPs的分子组成,共识别出3599个未知Cl-DBPs;随着识别出大分子DBPs中氯原子数增加,O/C呈上升趋势,芳香指数则呈下降趋势;此外,还明确了氯胺消毒中未知大分子DBPs是消毒后生成的总有机卤素的主要组成,由于氯胺的“缓释效应”,氯胺消毒后的水中识别出更多未知大分子Cl-DBPs。上述结果将毒性评估与未知DBPs识别相结合,为了解饮用水氯、氯胺消毒后生成的高毒性组分与物化特征提供了新见解。图2毒性导向的饮用水中未知消毒副产物识别ES&T2023年最佳论文奖链接:https://doi.org/10.1021/acs.est.4c12812论文1链接:https://doi.org/10.1021/acs.est.2c07810论文2链接:https://doi.org/10.1021/acs.est.3c00771环境水质学国家重点实验室2024年12月19日
    2024-12-19
  • 祝贵兵课题组提出水稻增产同步化肥减量新策略
    中国科学院生态环境研究中心祝贵兵课题组以环境中广泛存在的硝酸盐为起点,突破中性条件下固液界面亲和力弱的瓶颈,开发了可持续的环境硝酸盐选择性还原为铵技术,实现了水稻增产、化肥减量和地下水硝酸盐污染减缓的三重效果。相关研究成果以直接投稿的方式发表在国际权威学术期刊《PNAS》(2023,120,e2209979120;2024,121,e2408187121)上。氨,不仅是一种具有高能量密度的能源载体,而且是用于制造农业化肥的重要化学品。一百年来,传统的大规模合成氨主要依靠哈伯工艺(N2+H2→NH3),然而该方法需要高温(>500℃)高压(>200atm),每年净排放4.2亿吨CO2当量(约占全球能源的1-2%)。另一方面,含氮肥料的过度使用和工业废水的排放,导致硝酸盐在环境中迅速积累,严重危害人体健康和生态系统平衡。近年来,电化学硝酸盐还原制氨被认为是一种绿色的替代方案。然而,当前研究主要在强酸或强碱性条件下进行,而对于中性条件下的研究鲜有报道。这是因为中性条件下界面硝酸根离子亲和力弱,导致还原效率低。受自然界广泛存在的Fe(II)离子启发,课题组提出固液界面原位调控策略,以自然界广泛存在的羟基氧化铁(FeOOH)作为Fe的“源”,利用电的作用原位生成Fe(II)离子层,有效减弱界面静电斥力,强化硝酸根离子的界面聚集效应,进而极大提高了硝酸盐的还原效率,实现了迄今为止最高的氨产率之一。研究成果在理论上补充了经典电化学双电层模型中关于吸附的相关理论(PNAS,2023,120,e2209979120)。图1高氨产率的新界面调控策略水稻是全球三大主粮之一,稻米养活了全球超过一半的人口。水稻是一种喜铵的作物,而稻田灌溉水是硝酸盐的“储存库”。据此,课题组提出将稻田灌溉水的硝酸盐转化为铵,从而促进水稻氮吸收并代替部分化肥的新策略。由于分蘖期是水稻吸收氮素最多的时期(>90%),课题组重点在分蘖期进行硝酸盐还原为铵的操作,替代分蘖期施肥。盆栽实验表明这个新策略实现了水稻产量提高超过20%,并减少了50%的化肥使用。图2利用电化学技术将硝酸盐转化为铵的策略自然界中硝酸盐更容易被还原为氮气而不是铵。如何将硝酸盐还原为铵是上述策略成功的关键,这也对我们提出了挑战。在前期关于羟基氧化铁(FeOOH)的研究基础上,课题组巧妙的将单原子铁催化剂嵌入电化学技术中,充分利用单原子铁的强还原能力实现了高选择性的实际稻田灌溉水中硝酸盐快速还原为铵(选择性大于90%)。接着,科研人员通过15N同位素示踪技术证明了超过80%的环境硝酸盐中的氮素被水稻吸收利用,从而为水稻提供了可持续的氮供应。水稻的化肥利用效率仅有30-40%之间,稻田里大部分氮以硝酸盐的形式淋溶地下水,导致地下水硝酸盐超标,威胁地下水饮用水安全。课题组开发的环境硝酸盐选择性还原为铵技术独辟蹊径,将“不好吃”的硝酸盐转化为“好吃”的铵,既促进了水稻氮吸收,又减少了外源氮素输入,并阻止了水体中超过70%的硝酸盐淋溶地下水。同时,相对于传统的尿素施肥,这项技术可以节约19%的成本并提高27%的收益。研究结果首次将电化学技术用于农田灌溉水处理,是一项典型的学科交叉研究,为保障粮食安全同步环境污染治理提供了一个新思路。论文第一作者为刘春雷副研究员,祝贵兵研究员为通讯作者。文章链接:https://www.pnas.org/doi/10.1073/pnas.2209979120#core-collateral-metricshttps://www.pnas.org/doi/10.1073/pnas.2408187121#core-collateral-metrics环境水质学国家重点实验室2024年12月17日
    2024-12-17
  • 化学品评估研究室在复合污染物暴露的主要毒性物质筛查中取得新进展
    轮胎颗粒作为微塑料已经成为环境中重要的污染物,一旦进入水体中会浸出多种污染物,如何从这些污染物中筛查出主要毒性物质是需要解决的一个关键科学问题。本研究室利用以有害结局路径(AOP)为导向的分析方法揭示了轮胎浸出液中对斑马鱼造成毒性效应的主要污染物。首先将基于环境浓度的轮胎浸出液暴露于斑马鱼胚胎仔鱼,形态学和行为学分析表明,斑马鱼眼睛损伤和趋光性异常是主要的有害结局(AO);对眼睛进行组织病理学检查发现感光细胞的减少造成了视网膜外核层和色素上皮层厚度变薄,感光细胞分化过程受到抑制;利用转录组和代谢组联合分析的方法揭示了轮胎浸出液暴露主要对光传导和神经系统造成损伤,甲状腺系统在调控感光细胞增殖分化过程中起到重要作用,其中对甲状腺过氧化物酶(TPO)活性的抑制是重要的分子起始事件(MIE)之一,以此构建了轮胎浸出液对斑马鱼眼睛损伤的AOP。图1轮胎浸出液对斑马鱼胚胎仔鱼眼睛发育损伤的有害结局路径(AOP)进一步,为了筛查轮胎浸出液中造成斑马鱼眼睛损伤的主要污染物,首先利用高分辨质谱共鉴定出轮胎浸出液中42种主要污染物;基于AOP中的MIE,通过图神经网络模型和分子对接模拟,最终锁定了MBT是主要的TPO抑制剂;并通过体内试验验证了高通量筛查方法的准确性,解析了MBT暴露对斑马鱼眼睛损伤的毒性分子机制,证明了MBT在环境浓度下就可以对斑马鱼的眼睛造成明显损伤。另外,已有文章指出轮胎浸出液中的新型污染物6PPD也具有甲状腺干扰效应,从关键事件(KEs)出发,通过分子对接模拟和体外细胞测试发现6PPD及其光解产物6PPDQ均可以干扰甲状腺受体(TR)的活性,是潜在的TR拮抗剂。通过体内暴露实验和因果关系验证发现,6PPD而非6PPDQ可以作为TR拮抗剂,通过降低视蛋白丰度,抑制锥体感光细胞增殖,从而改变视网膜层结构,最终导致斑马鱼形成小眼症。通过以上工作,我们确定了轮胎浸出液中的MBT和6PPD是造成斑马鱼眼睛损伤的主要毒性物质,并解析了毒性作用的AOP。图2轮胎浸出液中对斑马鱼胚胎仔鱼造成眼睛发育损伤的主要污染物筛查以上工作通过高内涵方法构建复合污染物的AOP,不仅可以精准评估复合污染的分子机制,而且可以通过AOP中的MIE和KEs,利用高通量技术筛查主要的毒性物质,为复合污染物中的主要毒性物质筛查提供了新的思路,服务于新污染物筛查和治理的需求。相关研究成果发表于EnvironmentInternational,JournalofHazardousMaterials和EnvironmentalScience&Technology。以上系列研究工作的第一作者是本研究室的常静助理研究员,并得到了王子健研究员和万斌副研究员的指导。相关论文链接:https://www.sciencedirect.com/science/article/pii/S0160412023003264https://www.sciencedirect.com/science/article/pii/S0304389424010409?via%3Dihubhttps://pubs.acs.org/doi/10.1021/acs.est.4c11264化学品环境风险评估研究室2024年12月11日
    2024-12-11
  • 葛源研究组揭示土壤微生物多样性丧失削弱土壤缓冲气候变化的能力
    中国科学院生态环境研究中心葛源研究组研究发现土壤微生物多样性丧失限制了土壤缓冲气候变化的能力,相关成果发表于GlobalChangeBiology。土壤碳储量巨大,约是大气碳库的3倍,通过与大气碳交互深刻影响全球气候变化。传统气候模型预测,全球变暖会加速土壤碳分解,释放更多的二氧化碳到大气中,进一步加剧全球变暖趋势。土壤微生物是土壤碳分解和呼吸作用的主要执行者,可能通过对变暖的适应性响应,缓解或加剧变暖导致的土壤呼吸增加。这种调谐作用能够改变土壤呼吸对全球变暖的反馈,进而缓解或加剧全球变暖趋势。然而,当前的气候模型较少纳入微生物特征参数,增大了模型预测的不确定性。根本原因在于,尚不清楚微生物特征如何改变土壤呼吸对长期变暖的响应模式,其机制是什么该研究通过人工构建微生物多样性梯度,揭示土壤微生物多样性丧失会减弱土壤呼吸的热适应,进而削弱土壤缓冲气候变化的能力(图1)。当微生物多样性丧失时,能够适应更广泛温度范围的泛化种比例减少,导致微生物群落适应温度变化的能力减弱,无法缓解甚至加剧变暖导致的土壤呼吸增加,从而使更多的二氧化碳释放到大气中。该研究表明全球变化引发的微生物多样性丧失可能会削弱土壤缓冲气候变化的能力,对于将微生物群落特征纳入气候模型以准确预测未来气候变化趋势具有重要意义。上述研究得到国家自然科学基金、中国科学院前瞻战略科技先导专项(A类)等项目资助。文章链接:https://doi.org/10.1111/gcb.17601图1土壤微生物多样性调控呼吸热适应的机制概念图土壤环境科学与技术实验室2024年12月6日
    2024-12-06
院内单位
  • 院内单位
  • 中国科学院
  • 中国科学院大学
  • 中国科学院文献情报中心
  • 中国科学院计算机网络信息中心
  • 中国科学院科技创新发展中心
挂靠单位
  • 挂靠单位
  • 中国生态学学会
  • 中国生态学学会城市生态专业委员会
  • 中国生态学学会微生物专业委员会
  • 中国生态学学会生态工程专业委员会
  • 中国生态学学会旅游生态专业委员会
  • 中国生态学学会生态健康与人类生态专业委员会
  • 中国生态学学会区域生态专业委员会
  • 中国生态学学会可持续发展生态专业委员会
  • 中国生态学学会生态系统服务专业委员会
  • 国际环境问题科学委员会(SCOPE)中国委员会
  • 中国环境科学学会环境化学分会
  • 中国化学会环境化学专业委员会
  • 中国毒理学会分析毒理专业委员会
  • 北京生态修复学会
其他链接
  • 其他链接
  • 中华人民共和国科学技术部
  • 中华人民共和国生态环境部
  • 国家自然科学基金委员会
  • 人民日报
  • 人社部留学人员和专家服务中心中国博士后基金会
  • 北京林业大学
  • 美国环境保护局
  • 日本环境省
  • MAX-PLANCK-GESELLSCHAFT
  • 百灵威化学

版权所有:中国科学院生态环境研究中心 Copyright ©1997-2025

地址:北京市海淀区双清路18号 100085 京ICP备05002858号-1 京公网安备:11010802045865号